1,290 research outputs found

    Vector Generation for Maximum Instantaneous Current Through Supply Lines for CMOS Circuits

    Get PDF
    Abstract We present two new algorithms for generating a small set of patterns for estimating the maximum instantaneous current through the power supply lines for CMOS circuits. The rst algorithm is based on timed ATPG, while the second is a probability-based approach. Both algorithms can handle circuits with arbitrary but known delays and they produce a set of 2-vector tests. Experimental results demonstrating that the outcome of applying our algorithms is a small set of patterns producing a current that is a tight l o w er bound on the maximum instantaneous current are included

    Toward large-scale access-transistor-free memristive crossbars

    Full text link
    Abstract — Memristive crossbars have been shown to be excel-lent candidates for building an ultra-dense memory system be-cause a per-cell access-transistor may no longer be necessary. However, the elimination of the access-transistor introduces sev-eral parasitic effects due to the existence of partially-selected de-vices during memory accesses, which could limit the scalability of access-transistor-free (ATF) memristive crossbars. In this paper we discuss these challenges in detail and describe some solutions addressing these challenges at multiple levels of design abstrac-tion. I

    Graph Reasoning Transformer for Image Parsing

    Full text link
    Capturing the long-range dependencies has empirically proven to be effective on a wide range of computer vision tasks. The progressive advances on this topic have been made through the employment of the transformer framework with the help of the multi-head attention mechanism. However, the attention-based image patch interaction potentially suffers from problems of redundant interactions of intra-class patches and unoriented interactions of inter-class patches. In this paper, we propose a novel Graph Reasoning Transformer (GReaT) for image parsing to enable image patches to interact following a relation reasoning pattern. Specifically, the linearly embedded image patches are first projected into the graph space, where each node represents the implicit visual center for a cluster of image patches and each edge reflects the relation weight between two adjacent nodes. After that, global relation reasoning is performed on this graph accordingly. Finally, all nodes including the relation information are mapped back into the original space for subsequent processes. Compared to the conventional transformer, GReaT has higher interaction efficiency and a more purposeful interaction pattern. Experiments are carried out on the challenging Cityscapes and ADE20K datasets. Results show that GReaT achieves consistent performance gains with slight computational overheads on the state-of-the-art transformer baselines.Comment: Accepted in ACM MM202
    • …
    corecore